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Graphene

* Graphene and Dirac Equation

* A honeycomb lattice of carbon atoms with two sublattices
A and B

triangular Bravais lattice basis vectors:
. . . af ;- .
a, = \/gaex a, = E(ﬁex + 3ey)

a=0,142nm is the length of the C-C bond.

The vectors connecting any A-site to its
three B-site nearest neighbours;

5‘1,2 = %(i \/géx + Ey) 5, = —ae,



e The tight-binding Hamiltonian

H = tz ic;(@ + ga)cA(FA)+ h.c.
r a=1

T4

where ¢(=-2.7¢eV isthe hopping amplitude between two
adjacent carbon atoms.

* ¢, destroys afermionatsite ¥, and ¢} creates

a fermion at site 7, +9,

* By doing the Fourier transformation

— 1 —ik .7 "
c\r)=— E e e \k
a(l) \/N - a( )
onhe obtains the Hamiltonian in the form

H =" cl(k)[h(k)],,c, (k)



: h(l;) is the Bloch Hamiltonian
h(k)=d,(k)o, +d,(k)o,

o. are Pauli matrices and

R 3 Lo . 3 -
d,(k)=1) cos(k.5,) d,(k)=1) sin(k.S,)
a=1 a=1
hence, d,(k) isevenand d,(k) is odd functions

d,(—k)=d, (k) d,(~k)=~d, (k)

* Corresponding energy spectrum is given by the length of the
vector d =(d,,d,)

E(k)=|d(k)| = +d (k) +d, (k)

which describes a valence band (minus sign) and a conduction
band (plus sign) that are symmetricw.rt. £ =0
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* The valence and conduction bands touch at isolated points of
the BZ, which are obtained by solving the equation d(k)=0

* There are only two inequivalent such points called Dirac
points located at

N‘l
_|_

N 3\/_a




 We consider the low-energy theory near the Dirac points.
* The momenta close to the zero-energy points are (\cj\a <<1 )

k=+K+q

* By expanding to first-order in momenta, the Hamiltonian

—

describing the low energy excitations near k =+K is found as

¢ 0 tq.-iq, Y ¢,z (9)
HE® —y, (@ o (g X y A£K
FZ( A+K (Q) B+K (Q) +q. +iqy 0 CBi,g(é)

3at : : :
where v; =—%2106m/s =¢/300 isthe Fermi velocity and

CAi[z — CA (iK + q) é = QXéx + qyéy



* Using the convenient spinor representation

Ty (AT T T T
Ca(Q)—(CAK Cpx Cux CB-K)

the Hamiltonian can be written in the Bloch form

4
H=3.2 ¢ @rla.oirs+4,0)] e, (@
qg a,p=1
which has exactly the form of the the Dirac Hamiltonian

describing the spin-1/2 relativistic particles with zero mass.
( 73 is the Pauli matrix acts on K,-K points)

e Corresponding dispersion relation is linear in momentum
E(q) = VFW‘

which is typical for a relativistic massless particle, with the
velocity of light replaced by the Fermi velocity.



Symmetries and Mass Terms in Graphene

Dirac points are robust as long as some fundamental symmetries
are obeyed.
These fundamental symmetries are

— Time-reversal (TR) symmetry T
— Inversion symmetry P

If

Inversion operator

P:(x, )= (~x-y)
[H,P]=0, then the Hamiltonian has inversion symmetry.
Effect of P on Pauli matrices and Bloch Hamiltonian

P:(O'l,0'2,0'3)—>(0'1,—0'2,—0'3)
Ph(k)P™" = h(-k)

Inversion is represented by P =g, and the graphene Bloch
Hamiltonian is invariant under inversion ( d,(k) even, d,(k) odd)

Ph(K)P™ = o,(d, (K)o, +d, (K)o, Jo, = h(—F)

9



TR operation
T:.t—>—t

If [H,T]=0 , then the Hamiltonian has TR symmetry.

Effect of T on Pauli matrices and Bloch Hamiltonian

T:(Glagzags)_)(gla_gzags)
Th(k)T™ = h(-k)

TR operation is represented by T'=¢,K and the graphene
Bloch Hamiltonian is invariant under TR

(o, =1 and K is complex conjugation)
()T = 0, (d; (K)o, ~ds ()7, o,
=d,(=k)o, +d,(-k)o,
= h(=k)
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By breaking one of these symmetries or adding spin degrees of
freedom, one can add a mass term and open a gap.

A mass term anticommutes with the Hamiltonian, hence it enters
as a o, term with possible different coefficient functions d,(k) .

For example, a generic two-band model for spinless fermions on a
bipartite lattice can be written as

h(k)=¢,(k)o, +d (k)o, +d,(k)o, +d;(k)o,
=¢,(k)o, +d (k)&

When the spin is included, there are 16 possible different mass
terms, some breaks and some respects the symmetries.

However, we consider 3 types of mass terms.

(Semenov, Haldane and Kane-Mele masses)

11



i) Semenov mass

The simplest choice of a mass term is

d3(k) :MS

It enters to the Hamiltonian as a staggered on-site potential
term that breaks inversion and respects TR

_ T
H, _ZMSiCiCi
;

(i=A4,B and Mg, =—-M; )

The mass term is independent of k and has same sign at K
and K’'=-K points.

Dispersion relation becomes

E? =v§p2+M§

12



ii) Haldane mass

Another possibility is adding a phase to the second-neighbour
hopping term in the Hamiltonian.

This is done by magnetic fluxes ¢ and breaks TR symmetry,

H, = Z[ZCA(rA)cA(rA +b.)e” -I-ZCB(I’B)CB(I’B +b,)e ’¢]—|—hc

i=1
This gives a mass term in Dirac Hamiltonian at K and K’ points
d,(k=+K)=TF3/31,sin¢

Sign of the mass term at K and K’ is different.
Dispersion relation becomes

E*=v.p*+27t sin’ @
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iii) Kane-Mele mass

By adding spin degrees of freedom, one can write a mass term
that respects inversion and TR symmetries.

This corresponds to the intrinsic spin-orbit coupling term,

_ 7 T
Hy =il Zvijcia (83) 05 C 5
<<I, j>> 10
where v; =%l and s, isthe physical spin of the electrons (S3=(O _J ).

This gives a mass term
d,(£K) = £3+/31,s,
Hence, different signs at K and K’ points.

Dispersion relation is
E* = vpr2 +27/1§0

Different signs of the mass term at K and K’ points will give the
topological insulator property of the system.
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What is a Topological Insulator?

A topological insulator (Tl) is an insulator (gapped) in the bulk
and has also gapless states at the edge or surface.

Topological insulators are characterized by topological orders.
Different topological orders define different classes of Tls.

A Tl Hamiltonian must be a gapped Hamiltonian. A Tl
Hamiltonian in one topological class cannot be deformed
continuously to a Hamiltonian in another topological class.

(deformation means changing Hamiltonian parameters without closing the
gap)

To convert one topological class Hamiltonian to another one,
there must be a gapless state between two classes. Hence, the
insulating phase must disappear. These are the edge states.

15



* For example, a topological insulator which has an interface
with an ordinary insulator (or vacuum) has a gapless
boundary, although insulating at the bulk.

r— boundary

7

non-topological ("trivial")
insulator/vacuum

_

 The gapless boundary degrees of freedom are robust to
perturbations, as long as these perturbations do not close the
bulk gap and preserve the symmetries of the system.
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There are mainly two types of topological insulators;
— Z Insulators (Chern Insulators)
— Z,Insulators

An example for the first type is the Integer Quantum Hall
Effect (IQHE).

In this case, an applied magnetic field to a d=2 dimensional
electron system results a gapless edge state which
corresponds to a charge current at the edge.

.

17



The applied magnetic field breaks TR symmetry.

The quantized Hall conductivity o, at the edge can take
integer multiples of e*/4 .

This edge state possesses a chirality inherited from the
applied magnetic field and propagates only in one direction.

IQHE can be generalized to cases without an applied magnetic
field bu a TR breaking term in the Hamiltonian.

These are called Chern insulators.

The set of different topological classes is Z. (corresponds to the

number of edge states) 18



* Second type of topological insulators is Quantum Spin Hall
Effect or Z, Insulators.

* In this case, TR symmetry is conserved and the edge states
propagate in two opposite directions (with opposite spin) as
pairs.

7

i)

* Hence, there is no net charge current at the edge, however
there is non-zero spin current.

19



There are only two different topological classes in this case,
hence the name Z,.

If there are even number of pairs at the edge, we have a
trivial insulator.

If there are odd number of pairs at the edge, we have a
topological insulator.

The topological class of a topological insulator Hamiltonian is
determined by the topological invariants.

That is Chern number for Chern insulators and Z, invariant for
Z, insulators.

20



Chern Insulators

Different topological classes of a Chern insulator are
characterized by a topological invariant called Chern number.

It is defined from the eigenstates of the Hamiltonian.

Bloch States, Berry Connection and Curvature

Eigenstates of the Bloch Hamiltonian are called Bloch states

h(k)u, (k)) = E, (0)]u, (K))

Eigenvalues E (k) are periodicin momentum and all
distinct eigenvalues are located in the first BZ.

21




Eigenstates |u,(k)) are equivalent up to a phase.
Let us consider a loop (closed curve) C in the BZ.
Along such a loop the eigenstates acquire a phase

, (k) = ¢ u, (k)

where 7, = SECdk A4,(k) isthe Berry phase.

The Berry connection is defined in terms of the eigenstates as

A,(6) = iu, (k) |V | u, (K))

The Berry curvature is
F,(k)=V, % 4,(k)
=V, x(u, (k)[iV,

u, (k)

22



Chern Number

Chern number is defined as the integral of the Berry curvature
over the BZ

1
C= jBZ dk F(k)

(this is defined in 2D and called the first Chern number, there are generalizations
to higher dimensions and  F(k)= ) F, (k) )

Chern number is a topological invariant and it takes only
integer values.

For the IQHE the quantization of Hall conductivity is expressed

by the Chern number >
e
o, =C,—

h
Hence, the Chern number gives the number of chiral edge

states for Chern insulators (and IQHE).

Its sign determines the direction of the edge current.
23



* In 2D, for the systems with Bloch Hamiltonian

hk)=d(k).G

one can write the Chern number as follows

clzi a2 | 24 dd (k) .d (k)
A7 B2 ok, Ok,

where

d (k)
c?(k)‘

d(k) = and  |d (k)| =d (k) +d3 (k) + d3 (k)

24



For massive Dirac Hamiltonians, explicit calculation of the
Chern number gives the result that it depends only on the
mass term d, (k).

For massive graphene Hamiltonians, the sign of the mass term
at K and K’ points determine the value of the Chern number;

C, = [sen(d, (k) at K )-sgn(d; (k) at K')

Hence, the mass terms that have different signs at K and K’
points result a non-zero Chern number and a non-trivial
topological insulator phase.

If the sign of the mass terms at K and K’ points are same,
then the Chern number is zero and we have an ordinary trivial
insulator phase.

25



Haldane Model
Spinless fermion model for the IQHE without Landau levels.

QHE may result from the broken TR symmetry without any net
magnetic flux through the unit cell of a periodic 2D lattice.

We have a graphene honeycomb lattice and a periodic magnetic
flux density normal to the plane with the full symmetry of the
lattice and with the zero total flux through the unit cell.

The flux @ inthe region a
and the flux ¢, intheregion b
have the relation ¢ =-¢,
and the flux @, inthe region c
IS ¢ =0 -

Hence, the total flux in the unit

cell is zero. (Haldane, PRL 61, 2015 (1988))

26




Haldane model Hamiltonian is

_ f f —ivy$ b
H—Mzgicl.ci+t126icj+t2 Ze e
I

<i,j> <L, j>>

The first term is inversion-symmetry breaking term with &, =+1
that is on-site energies + M forj=4 and —M for ;=B .

Second term is the nearest-neighbour hopping term.

Third term is the second-nearest-neighbour hopping term
with a phase and 27
¢ = ¢—(2¢a +4,)

0
¢, =h/c and v, =1 gives the different phases for different
hopping terms.

27



* After doing Fourier transformation, one obtains the two-band
Bloch Hamiltonian as follows;

h(k)=d.(k).c,

where

d,(k)=e(k)=2t,cos¢> cos(k .b,)
d (k)= cos(k .d,) |
d,(k)=1> sin(k .d,)

dy(k)=M -2t,sin$> sin(k .b,)

here a, are Bravais lattice basis vectors and
b=a,-a, , by,=a,—-a, , by=a, —a,

28



* By considering low energy limit at K and K’ points, we
obtain the Bloch Hamiltonians;

h(K +k) = =31, cos +%atl (- k.0, — k., )+ (b +331, sin ) o,

(K" + k) = =31, cos ¢ +%atl (k,0, — k.0, )+ (M =331, sin g) o,

 Hence, we have the mass terms at K and K’ points
d,(K)=M +3/3t,sin ¢ d,(K')=M —33t,sin ¢

* Consequently, we can find the Chern number as follows

C, = % sgn(M + 3\/§t2 sin ¢)— sgn(M — 3\/§t2 sin ¢)]

29



We consider three cases;

)| M =33t sing or M =-33t,sing
In this case, the Hamiltonian is gapless at K and gapped at K

or gapless at K and gapped at K’

i) | for M >3\/§t2 sin ¢
In this case, Chern number is zero.

So, we have a trivial insulator.

i) for M <3+/3t,sin ¢
In this case, Chern numberis +1 for ¢ >0 and -1 for ¢ <0

So, we have the topological insulator phase.

30



* By deforming the Hamiltonian parameters, we obtain different
topological phases and between them there is a gapless

transition point.
* The phases of the Haldane model and Chern numbers are given

as the following diagram;
M [ty

3v/3

0

-3v/3

* For ¢ =0 (no magnetic fluxes), Haldane model reduces to an
ordinary insulator and there are no topological phases (C, =0 ).

31



* Chiral Edge States

* Tls are characterized by their gapless edge states.

For Chern insulators, there are chiral edge states (edge states
that go in one direction).

e Since the Chern number is a topological quantity, it cannot
change simply through a continuous transformation, but only
at a phase transition associated with a gap closing.

* Let us consider an interface at y=0 between a non-trivial
insulator with C, =1 for y<0 and a trivial insulator with C, =0

for y>0 ,

Ci=0

Ca

[l
o

32



Consider the mass terms of the Haldane model
m=d,(K)=M +3/3t,sin ¢

m' =d,(K')=M —3~/3t,sin ¢

Necessarily, one of the mass terms changes sign at the
interface:

m'(y<0)<0 and m'(y >0)>0 , whereas the other one has
constantsign m>0 .

This is because of the Chern number

1 :
C, =~ (sgn(m)-sgn(m’))

Then, it is natural to set m(0) =0 , which implies that the gap

closes at the interface.
33



* Asthe mass m depends on the position, by doing a unitary

transformation the Bloch Hamiltonian for the Haldane model
at K’ point leads to the eigenvalue equation;

—10, 0,+m'(y) |« _F 9%
-0, +m'(y) 0, [ﬂj_ [ﬁj

For our choice of m'(y), there is only one normalizable
solution;

| ’ |
P (x,p) oc e GXPE— | m’(y’)dy’)(lj

for the energy

E(k)=hv .k

34



* This solution is localized transverse to the interface where m’
changes sign;
ym(y) and ||

-
______________

* The edge state crosses the Fermi energy at k. =0 , with a

positive group velocity Vy and thus corresponds to a ‘chiral
right moving’ edge state.

e When considering a transition from an insulator with C, =-1
tothe C, =0 ,theeigenvalue becomes FE(k )=-hv.k,

and it has a negative group velocity and ‘chiral left moving’
edge state.
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Z, Insulators

Z, insulators are characterized by TR symmetry and spin-orbit
interaction play a prominent role.

Different topological classes are defined by Z, invariants
which take only two values.

TR Symmetry, Kramers’ Pairs, TRIM Points

For spin 1/2 particles TR operation has the property 7° =1 .

Over the BZ of the system, the TR operation relates the Bloch
states at k with the Bloch states at -k.

Bloch Hamiltonian at k and -k satisfy

h(—k) = Th(k)T "™

36




TR implies the existence of Kramers’ pairs of eigenstates:

Any eigenstate of h(k) at k is an eigenstate of A(—k) at -k
with the same energy.

* So, all eigenstates can be labelled by pairs;

We denote |, Il as Kramers’

pairsindexand pn=1,....N as

non-Kramers’ pairs index.
Kramers pairs eigenstates are

orthogonal to each other.

—G1/2 0 G1/2

* TR transforms eigenstates at k of bands | into eigenstates at
-k of bands Il and vice versa, but only up to a phase factor,

w0, (k)) =" T (k)

37



Some points of the BZ are invariant under TR operation. These
points are called TR invariant momentum (TRIM) or high
symmetry points.

These are fixed points of T and play and important role in TR
invariant systemes.

At TRIM points Kramers’ pairs are degenerate. (Since Kramers’
pairs are orthogonal and possess the same energy, the
spectrum is necessarily always degenerate at TRIM points.)

Kramers’ pairs and TRIM points can be used in defining
topological invariants for TR invariant systems, and these
invariants define the topological class of the system.

38



e Kane-Mele Model

e The Haldane model of a Chern insulator shows that a non-

trivial insulator with a non-zero Chern number can exist when

TR symmetry is broken.

 Kane and Mele generalized the Haldane model to the

graphene lattice model of electrons with spin 1/2.
(Kane and Mele, PRL 95, 146802 (2005))

* They introduced the spin-orbit coupling between electron
spin and momentum to replace the periodic magnetic flux
and predicted a new quantum phenomenon; the quantum
spin Hall effect (QSHE).

e Unlike the QHE in which the magnetic field breaks TR
symmetry, the spin-orbit coupling preserves TR symmetry.

39



* In asystem with TR symmetry, electrons with spin-up in the
edge channel flow in one direction ( C, =1 ),

while electrons with spin-down flow in the opposite direction

( Cl — _1 )
the net charge current in two edge channels is zero;
f .
A < ; :
Kane-Mele insulator
(QSH state)
L 4 J |
< f L

* Instead, a pure spin current circulates around the boundary of

the system; #
1 zz_e(]T -1,)



* The Kane-Mele model for the QSHE is a graphene model with
the TR invariant spin-orbit coupling;

H =thl.ch +idg, Zvl.jcfszcj +iAd, Zcf(Exdij)ch +/1vzgicfcl.
I

<i,j> <<i,j>> <i,j>

* The first term is the nearest neighbour hopping term on a
graphene lattice, where ¢ =(c},c)) , i=4,B

 The second term is an intrinsic spin-orbit interaction, which
involves spin-dependent second neighbour hopping.
Here :%(&'} xd ), =+l

NG

where d; and d; are two unit vectors
along the two bonds the electron
traverses going from site j to i.

The Pauli matrices §; describe the electron ¢

spin.



* The third term is the nearest neighbour Rashba spin-orbit
coupling term.

Here d is the distance between nearest neighbour sites;

This term corresponds to the application of an electric field in
the plane.

* The last term is the inversion symmetry breaking term
(symmetry breaking w.rt. 4o B)

g, =1 depending on whether i is the A or B site (on-site
energy term).

42



We can obtain the BIoch Hamiltonian of the Kane-Mele model

h(k) = Za’ (O, + Za’ab(k)rab

a<b=1
This is written in the basis of r and r, which are the

generators of the Clifford algebra
{r ,r,}=25, a,b=1,2,3,45

The representation for basis matrices for the Kane-Mele
model is as follows

L3545 = (0'1®] o,®1, 02®S1,02®S2,02®S3)

O, represents sublattice and S, represents spin.

l

43



e The functions in the Bloch Hamiltonian are found as

d[

1+2cos£cos
2

d2 :ﬂ“v

d3 :ﬂ“R

( kx
I —cos—cos
2

k.

——\/_/1 sm;sm

3k

2

V3k,

V3k, J

;

V3k,

2

d,=-2t cos—sm
2
. .k

ds = /150[2 sink_ —4sm?"cos

k. 3k

* sin 4
2

V3K,

d,, =—A,cos

= ﬁ/’LR sin%cos

J3k

;

* For the special case A, =0

, the Hamiltonian split into two

independent parts; spin up and spin down copies of Haldane
model.
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* By taking the low-energy limit, we have the Bloch
Hamiltonians at K and K’ points as

WK)=A0,81+333A,0,®s,

WK =4 0,®1-331,0,®s,

here & ®1= o 03 and o, ®s, = o 0
0 o, 0

* Hence, Bloch Hamiltonians are diagonal in s matrices and
they can split into up and down Hamiltonians.

* The mass terms are written as

d(K)=(1, +3v32)
dyy (K') = (ﬂ“v - 3\/5/%0)

d, (K)= (ﬂ’v — 3\/5/130 )

d, (K" =(4, +332,)

45



Chern numbers
i)in the case of A > 3«/5/150

C ;sgn(/l +3«/_/1SO) sgn( —3«/_/150)]

1

5 sgn( 3\/_150) sgn(/l +3«/_/1SO) 0

total Chern number Gy +C; =0 and there is no spin current, sinceC, —C | =0

Cy =

1

ii) in the case of A, < 3\/_

C ;sgn(/l +3\/_/1SO) sgn( —3\/_/150) 1

C,= ; sgn( 3\/_2.50) sgn(ﬁv+3«/§/150)]:—1

total Chern number C,+C,=0 , but there must be spin currents
because of C,—C, %0
1 1

46



jii) for A, =3+/34,

— Spin up Hamiltonian is gapless at K’ , but gapped at K
— Spin down Hamiltonian is gapless at K , but gapped at K’
So, total Hamiltonian is gapless both at K and K’

Hence, there is a gapless state between two different

topological phases.
The transition pointis A, = 3«/5/150 between two different

topological phases (cases (i) and (ii)).

For A, #0, spin up and spin down will mix together and we
cannot separate the whole system into two independent parts.

So, the Chern number is not useful, and we need Z, invariant to
describe these phases.
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Helical Edge States

At the boundary between a Kane-Mele topological insulator
and a trivial insulator, helical gapless edge states occur:

the spin and the direction of these states are tight together.
Let us consider the Hamiltonian

h(k) = d, (k)1 +d, (k) +ds (k)T
In d=2 there are four TRIM points A (i=0,..3)

The mass term of the model is determined by d,(1,) and it
has different signs for trivial and non-trivial insulators.

We have an interface at y=0 between
— Atrivial insulator for y>0 whered (4,)>0 and
— Atopological insulator for y<0 where d,(4,) <0

48



e By defining m(y)=d,(4,)(»)

we have m(y>0)>0 and m(y<0)<0
* The Hamiltonian has two edge states solutions

—ik, x Y ' '
W, 2 (x,y)ce™ eXp[— [ m(y )dy}

0

1
0
0

W, L (x,y) e eXp[— X m(y')dy'}

_—o O O

— One is spin up right moving state

— The other is spin down left moving state

* They constitute a Kramers pairs of edge states.

* If there are even number of pairs of edge states, we have a

trivial insulator

* If there are odd number of pairs of edge states, we have a

topological insulator.
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Z,Invariants

Z, invariants are topological invariants that characterizes the
topological classes of Z, insulators.

We have a TR symmetric Bloch Hamiltonian #(k)

and its eigenstates |u, (k)> . Because of TR symmetry T|u, (k)>

are also eigenstates.

Let us define the sewing matrix
w, (k) = {ut, (=) [T, (k)
At TRIM points this matrix is antisymmetric.
For an antisymmetric matrix A, Pfaffian can be defined by
(Pf 4) =det 4
Hence, the Pfaffian of the sewing matrix at TRIM points A,

PF (w,(A))=PF (1, (A)[T]ur,(A))

50



The Z, invariant is defined as

H Pf w(/l)
iei A/ det w(d)
At all TRIM points the quantity Pf /Jdet hasthe value +1.

The product of +1 valuesgives +1 or —1 which
correspondsto v=0 or v=1.

For v =0 ,topologically trivial class
For y =1 ,topologically non-trivial class

The eigenstates ‘”i (k)> of the Bloch Hamiltonian A(k) at TRIM
points A, determine the topological property of the system.

Since there are only two topological classes, they are called
Z, insulators. (Z, is the group of two elements)
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Experimental Realizations: BHZ Model

SO interaction for graphene is extremely small, so the Z, insulator
property is experimentally hard to achieve.

However, effective model of HgTe/CdTe quantum wells gives an
experimental realization.

Band structure of HgTe and CdTe near the I point

L0

0.3

E (av]

-0.5

-1.4

HgTe CdTe 13

\ / b CdTe has a normal semi-

I

conductor band progression

\ / * which is I'; s-type band lying
fe above the I, p-type band.

5

,—--"__'_'_._-_:b-_‘:_-_-_'_"_"‘---.. u:“i
: HgTe has an inverted band

rr-_'. B -0.5
/_//\ e —|  progression, where s-type I,
I 10 band lies below the p-type g

/\ r, band.
T | e e — o D

1]
k(nmr ] k(nm 1) 52



* Ina CdTe/HgTe/CdTe quantum well, I, — I, six bands combine
to form an effective four-band model.

PR I

| HgTe HgTe
L.l RBaad L ——

CdTe ||L---4 CdTe T Wi s s CdTe
H1 Eq
—————— Is I - g —
d < d. d > d.

* E1and H1 are linear combinations of ', — g bands.

e |If the thickness of the quantum well d is smaller than a
critical thickness d < d_, than E1>Hl and
ifd >d_then H1>El .



Effective Hamiltonian of the quantum well is written as

H (k)= hk)y 0
SETT0 0 B(=k)
where (k) =e(k) +d,(k)o, .

The system has TR symmetry, we can split the spin up-down parts.

Components of the spin up part are

ek)y=C — Dk* , d (k)= Ak,

d,(k)= Aky , diy(k)=M — Bk*
Hence we have

h(k)=C—Dk* + Ak, +k 0, )+ (M - Bk )o.
where A, B, C, D and M are material parameters and dependent

on the thickness d of the quantum well.
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The signs of the A, B, C and D parameters does not change with ¢

However, the sign of M changes at the critical thickness d . .
Because M is related to the difference between E1 and H1 bands.

Hence, we have a sign changing mass term.

The Chern numbers for spin up and down cases are found as

. 1 , MB>0 , d>d,
"o , MB<0 , d<d,

c +1, MB>0 , d>d,
Y lo , MB<0 , d<d.
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So, we have a topological phase for QW thickness d > d_ .
For d < d, we have ordinary insulating phase.

For d > d_ we have

C1T+C1¢:O and CIT_CLL ?50

Hence, there is spin current at the edge and there are helical
edge states.

So, this model is a Z, topological insulator.

This model is the first experimentally realized topological

insulator. (Bernevig, Hughes and Zhang, Science 314, 1757 (2006))
(Molenkamp et al, Science 318, 766 (2007))
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Summary

Sign changing mass terms are responsable for the topological insulator property.
Topological insulators are bulk insulating and edge conducting systems.

To deform a Hamiltonian from one topological class to another, one must pass
from a gapless metallic phase. (These are the edge states)

There are two types of topological insulators: Chern insulators and Z, insulators.

Chern insulators are TR breaking systems and are characterized by integer
topological invariants; Chern numbers. They have chiral edge states.
Example: Haldane model.

Z, insulators are TR invariant systems and are characterized by two-valued
topological invariants; Z, invariants. They have helical edge states.
Example: Kane-Mele model.

There are experimentally realized materials that have topological insulator
property.
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... and what else?

3D topological insulators

Classification and periodic table of Tl

Bundle theory and K-theory point of view to Tl

Topological field theory of Tl

Topological superconductors
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