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Graphene

• Graphene and Dirac Equation
• A honeycomb lattice of carbon atoms with two sublattices

A and B

triangular Bravais lattice basis vectors:triangular Bravais lattice basis vectors:

is the length of the C-C bond.

The vectors connecting any A-site to its

three B-site nearest neighbours;
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• The tight-binding Hamiltonian

where is the hopping amplitude between two
adjacent carbon atoms.

• destroys a fermion at site         and creates

a fermion at site
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• By doing the Fourier transformation

one obtains the Hamiltonian in the form
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• is the Bloch Hamiltonian

are Pauli matrices and

hence,             is even and is odd functions
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• Corresponding energy spectrum is given by the length of the
vector

which describes a valence band (minus sign) and a conduction
band (plus sign) that are symmetric w.r.t.
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• The valence and conduction bands touch at isolated points of 
the BZ, which are obtained by solving the equation

• There are only two inequivalent such points called Dirac
points located at
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• We consider the low-energy theory near the Dirac points.

• The momenta close to the zero-energy points are (                )

• By expanding to first-order in momenta, the Hamiltonian
describing the low energy excitations near is found as
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• Using the convenient spinor representation

the Hamiltonian can be written in the Bloch form

which has exactly the form of the the Dirac Hamiltonian
describing the spin-1/2 relativistic particles with zero mass.      
(       is the Pauli matrix acts on K,-K points)
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τ(       is the Pauli matrix acts on K,-K points)

• Corresponding dispersion relation is linear in momentum

which is typical for a relativistic massless particle, with the
velocity of light replaced by the Fermi velocity.
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• Symmetries and Mass Terms in Graphene
• Dirac points are robust as long as some fundamental symmetries

are obeyed.

• These fundamental symmetries are

– Time-reversal (TR) symmetry T

– Inversion symmetry P

• Inversion operator

( ) ( )yxyxP −−→ ,,:

If , then the Hamiltonian has inversion symmetry.

• Effect of  P on Pauli matrices and Bloch Hamiltonian

• Inversion is represented by and the graphene Bloch
Hamiltonian is invariant under inversion (           even,            odd)
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• TR operation

If , then the Hamiltonian has TR symmetry.

• Effect of  T on Pauli matrices and Bloch Hamiltonian

ttT −→:

[ ] 0, =TH

( ) ( )321321 ,,,,: σσσσσσ −→T
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• TR operation is represented by and the graphene
Bloch Hamiltonian is invariant under TR

(               and K is complex conjugation)
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• By breaking one of these symmetries or adding spin degrees of 
freedom, one can add a mass term and open a gap.

• A mass term anticommutes with the Hamiltonian, hence it enters
as a         term with possible different coefficient functions .

• For example, a generic two-band model for spinless fermions on a 
bipartite lattice can be written as
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• When the spin is included, there are 16 possible different mass
terms, some breaks and some respects the symmetries.

• However, we consider 3 types of mass terms.

(Semenov, Haldane and Kane-Mele masses)
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• i)  Semenov mass

• The simplest choice of a mass term is

• It enters to the Hamiltonian as a staggered on-site potential
term that breaks inversion and respects TR
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• The mass term is independent of  k and has same sign at  K
and K’= - K  points.

• Dispersion relation becomes
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• ii)  Haldane mass

• Another possibility is adding a phase to the second-neighbour
hopping term in the Hamiltonian.

• This is done by magnetic fluxes and breaks TR symmetry,φ
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• This gives a mass term in Dirac Hamiltonian at K and K’ points

• Sign of the mass term at  K  and K’  is different.

• Dispersion relation becomes
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• iii)  Kane-Mele mass

• By adding spin degrees of freedom, one can write a mass term
that respects inversion and TR symmetries.

• This corresponds to the intrinsic spin-orbit coupling term,

where and is the physical spin of the electrons (                      ).

• This gives a mass term
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• This gives a mass term

• Hence, different signs at  K and K’ points.

• Dispersion relation is

• Different signs of the mass term at K and K’ points will give the
topological insulator property of the system.
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What is a Topological Insulator?

• A topological insulator (TI) is an insulator (gapped) in the bulk
and has also gapless states at the edge or surface.

• Topological insulators are characterized by topological orders. 
Different topological orders define different classes of TIs.

• A TI Hamiltonian must be a gapped Hamiltonian. A TI • A TI Hamiltonian must be a gapped Hamiltonian. A TI 
Hamiltonian in one topological class cannot be deformed
continuously to a Hamiltonian in another topological class.

(deformation means changing Hamiltonian parameters without closing the

gap)

• To convert one topological class Hamiltonian to another one, 
there must be a gapless state between two classes. Hence, the
insulating phase must disappear. These are the edge states.
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• For example, a topological insulator which has an interface
with an ordinary insulator (or vacuum) has a gapless
boundary, although insulating at the bulk.

• The gapless boundary degrees of freedom are robust to
perturbations, as long as these perturbations do not close the
bulk gap and preserve the symmetries of the system.
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• There are mainly two types of topological insulators;

– � Insulators (Chern Insulators)

– �2 Insulators

• An example for the first type is the Integer Quantum Hall
Effect (IQHE).

• In this case, an applied magnetic field to a d=2 dimensional
electron system results a gapless edge state which
corresponds to a charge current at the edge.corresponds to a charge current at the edge.

17



• The applied magnetic field breaks TR symmetry.

• The quantized Hall conductivity at the edge can take
integer multiples of            .

• This edge state possesses a chirality inherited from the
applied magnetic field and propagates only in one direction.

xyσ
he /2

• IQHE can be generalized to cases without an applied magnetic
field bu a TR breaking term in the Hamiltonian.

• These are called Chern insulators.

• The set of different topological classes is �. (corresponds to the

number of edge states)
18



• Second type of topological insulators is Quantum Spin Hall
Effect or �2 Insulators.

• In this case, TR symmetry is conserved and the edge states
propagate in two opposite directions (with opposite spin) as 
pairs.

• Hence, there is no net charge current at the edge, however
there is non-zero spin current.
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• There are only two different topological classes in this case, 
hence the name �2.

• If there are even number of pairs at the edge, we have a 
trivial insulator.

• If there are odd number of pairs at the edge, we have a 
topological insulator.

• The topological class of a topological insulator Hamiltonian is 
determined by the topological invariants.

• That is Chern number for Chern insulators and �2 invariant for
�2 insulators.
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Chern Insulators

• Different topological classes of a Chern insulator are
characterized by a topological invariant called Chern number.

• It is defined from the eigenstates of the Hamiltonian.

• Bloch States, Berry Connection and Curvature• Bloch States, Berry Connection and Curvature

• Eigenstates of the Bloch Hamiltonian are called Bloch states

• Eigenvalues are periodic in momentum and all
distinct eigenvalues are located in the first BZ. 
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• Eigenstates are equivalent up to a phase.

• Let us consider a loop (closed curve)         in the BZ.

Along such a loop the eigenstates acquire a phase

where is the Berry phase.
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• Chern Number
• Chern number is defined as the integral of the Berry curvature

over the BZ

(this is defined in 2D and called the first Chern number, there are generalizations

to higher dimensions and )

• Chern number is a topological invariant and it takes only

∫=
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• Chern number is a topological invariant and it takes only
integer values.

• For the IQHE the quantization of Hall conductivity is expressed
by the Chern number

• Hence, the Chern number gives the number of chiral edge
states for Chern insulators (and IQHE).

• Its sign determines the direction of the edge current.
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• In 2D, for the systems with Bloch Hamiltonian

one can write the Chern number as follows
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• For massive Dirac Hamiltonians, explicit calculation of the
Chern number gives the result that it depends only on the
mass term .

• For massive graphene Hamiltonians, the sign of the mass term
at  K and K’ points determine the value of the Chern number;
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2
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• Hence, the mass terms that have different signs at  K and K’
points result a non-zero Chern number and a non-trivial
topological insulator phase.

• If the sign of the mass terms at  K and K’ points are same, 
then the Chern number is zero and we have an ordinary trivial
insulator phase.
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• Haldane Model
• Spinless fermion model for the IQHE without Landau levels.

• QHE may result from the broken TR symmetry without any net 
magnetic flux through the unit cell of a periodic 2D lattice.

• We have a graphene honeycomb lattice and a periodic magnetic
flux density normal to the plane with the full symmetry of the
lattice and with the zero total flux through the unit cell.

The flux in the region aφThe flux in the region a

and the flux in the region b

have the relation .

and the flux in the region c

is                .

Hence, the total flux in the unit

cell is zero. (Haldane, PRL 61, 2015 (1988))
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• Haldane model Hamiltonian is

• The first term is inversion-symmetry breaking term with
that is on-site energies for and for .
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• Second term is the nearest-neighbour hopping term.

• Third term is the second-nearest-neighbour hopping term
with a phase and

and gives the different phases for different
hopping terms.
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• After doing Fourier transformation, one obtains the two-band
Bloch Hamiltonian as follows;
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• By considering low energy limit at  K and K’ points, we
obtain the Bloch Hamiltonians;
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• Hence, we have the mass terms at  K and K’ points

• Consequently, we can find the Chern number as follows
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• We consider three cases;

• i) or

• In this case, the Hamiltonian is gapless at  K’ and gapped at  K

or gapless at  K and gapped at  K’

• ii) for

φsin33 2tM = φsin33 2tM −=

φsin33 2tM >• ii) for

• In this case, Chern number is zero.

So, we have a trivial insulator.

• iii) for

• In this case, Chern number is  +1 for and -1 for

So, we have the topological insulator phase.
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• By deforming the Hamiltonian parameters, we obtain different
topological phases and between them there is a gapless
transition point.

• The phases of the Haldane model and Chern numbers are given
as the following diagram;

• For (no magnetic fluxes), Haldane model reduces to an 
ordinary insulator and there are no topological phases (             ).

0=φ
01 =C
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• Chiral Edge States
• TIs are characterized by their gapless edge states. 

For Chern insulators, there are chiral edge states (edge states
that go in one direction).

• Since the Chern number is a topological quantity, it cannot
change simply through a continuous transformation, but only
at a phase transition associated with a gap closing.

Let us consider an interface at  y=0  between a non-trivial• Let us consider an interface at  y=0  between a non-trivial
insulator with for y<0  and a trivial insulator with
for y>0

11 =C 01 =C
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• Consider the mass terms of the Haldane model

• Necessarily, one of the mass terms changes sign at the
interface:

φsin33)( 23 tMKdm +==

φsin33)( 23 tMKdm −=′=′

interface:

and , whereas the other one has 
constant sign .

• This is because of the Chern number

• Then, it is natural to set                   , which implies that the gap
closes at the interface.

0)0( <<′ ym 0)0( >>′ ym

0>m

( ) ( )( )mmC ′−= sgnsgn
2

1
1

0)0( =m

33



• As the mass m depends on the position, by doing a unitary
transformation the Bloch Hamiltonian for the Haldane model 
at  K’ point leads to the eigenvalue equation;
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• For our choice of             , there is only one normalizable
solution;
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• This solution is localized transverse to the interface where m’
changes sign;

• The edge state crosses the Fermi energy at              , with a 
positive group velocity and thus corresponds to a ‘chiral
right moving’ edge state.

• When considering a transition from an insulator with
to the , the eigenvalue becomes
and it has a negative group velocity and ‘chiral left moving’ 
edge state.
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�2 Insulators

• �2 insulators are characterized by TR symmetry and spin-orbit

interaction play a prominent role.

• Different topological classes are defined by �2 invariants

which take only two values.

• TR Symmetry, Kramers’ Pairs, TRIM Points

• For spin 1/2 particles TR operation has the property .

• Over the BZ of the system, the TR operation relates the Bloch
states at  k with the Bloch states at  -k.

• Bloch Hamiltonian at  k and -k satisfy

12 =T
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• TR implies the existence of Kramers’ pairs of eigenstates:

Any eigenstate of           at  k is an eigenstate of             at  -k
with the same energy.

• So, all eigenstates can be labelled by pairs;

We denote I, II  as Kramers’

pairs index and as      

non-Kramers’ pairs index.

)(kh )( kh −

Nn , ... ,1=

non-Kramers’ pairs index.

Kramers pairs eigenstates are

orthogonal to each other.

• TR transforms eigenstates at  k of bands I into eigenstates at  
-k of bands II and vice versa, but only up to a phase factor,
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• Some points of the BZ are invariant under TR operation. These
points are called TR invariant momentum (TRIM) or high
symmetry points.

• These are fixed points of  T and play and important role in TR 
invariant systems.

• At TRIM points Kramers’ pairs are degenerate. (Since Kramers’ • At TRIM points Kramers’ pairs are degenerate. (Since Kramers’ 
pairs are orthogonal and possess the same energy, the
spectrum is necessarily always degenerate at TRIM points.)

• Kramers’ pairs and TRIM points can be used in defining
topological invariants for TR invariant systems, and these
invariants define the topological class of the system.
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• Kane-Mele Model

• The Haldane model of a Chern insulator shows that a non-
trivial insulator with a non-zero Chern number can exist when
TR symmetry is broken.

• Kane and Mele generalized the Haldane model to the
graphene lattice model of electrons with spin 1/2.                 
(Kane and Mele, PRL 95, 146802 (2005))(Kane and Mele, PRL 95, 146802 (2005))

• They introduced the spin-orbit coupling between electron
spin and momentum to replace the periodic magnetic flux
and predicted a new quantum phenomenon; the quantum
spin Hall effect (QSHE).

• Unlike the QHE in which the magnetic field breaks TR 
symmetry, the spin-orbit coupling preserves TR symmetry.
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• In a system with TR symmetry, electrons with spin-up in the
edge channel flow in one direction (             ),

while electrons with spin-down flow in the opposite direction
(                )

the net charge current in two edge channels is zero;
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0=+= ↓↑ IIIc

• Instead, a pure spin current circulates around the boundary of 
the system;
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• The Kane-Mele model for the QSHE is a graphene model with
the TR invariant spin-orbit coupling;

• The first term is the nearest neighbour hopping term on a 
graphene lattice, where

• The second term is an intrinsic spin-orbit interaction, which
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• The second term is an intrinsic spin-orbit interaction, which
involves spin-dependent second neighbour hopping.

Here

where and are two unit vectors

along the two bonds the electron

traverses going from site j to i.

The Pauli matrices describe the electron

spin.
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• The third term is the nearest neighbour Rashba spin-orbit
coupling term.

Here is the distance between nearest neighbour sites;

This term corresponds to the application of an electric field in 

ijd
r

This term corresponds to the application of an electric field in 
the plane.

• The last term is the inversion symmetry breaking term
(symmetry breaking w.r.t.              )

depending on whether i is the A or B site (on-site 
energy term).

BA↔
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• We can obtain the Bloch Hamiltonian of the Kane-Mele model 
as

• This is written in the basis of         and which are the
generators of the Clifford algebra

and
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• The representation for basis matrices for the Kane-Mele 
model is as follows

represents sublattice and represents spin.
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• The functions in the Bloch Hamiltonian are found as
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• For the special case , the Hamiltonian split into two
independent parts; spin up and spin down copies of Haldane
model.
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• By taking the low-energy limit, we have the Bloch
Hamiltonians at  K and K’ points as

here and
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• Hence, Bloch Hamiltonians are diagonal in  s matrices and
they can split into up and down Hamiltonians.

• The mass terms are written as
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• Chern numbers

• i) in the case of

total Chern number and there is no spin current, since         

• ii) in the case of
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λλ 33<• ii) in the case of

total Chern number , but there must be spin currents

because of
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• iii) for

– Spin up Hamiltonian is gapless at  K’ , but gapped at  K

– Spin down Hamiltonian is gapless at  K , but gapped at  K’

So, total Hamiltonian is gapless both at  K and K’

• Hence, there is a gapless state between two different
topological phases.

• The transition point is                           between two different

SOλλν 33=

λλ 33=• The transition point is                           between two different
topological phases (cases (i) and (ii)).

• For , spin up and spin down will mix together and we
cannot separate the whole system into two independent parts.

• So, the Chern number is not useful, and we need �2 invariant to

describe these phases.
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• Helical Edge States

• At the boundary between a Kane-Mele topological insulator
and a trivial insulator, helical gapless edge states occur:

the spin and the direction of these states are tight together.

• Let us consider the Hamiltonian

• In d=2 there are four TRIM points
552211 )()()()( Γ+Γ+Γ= kdkdkdkh

)3,...,0(   =iλ• In d=2 there are four TRIM points

• The mass term of the model is determined by and it 
has different signs for trivial and non-trivial insulators.

• We have an interface at  y=0  between

– A trivial insulator for y>0  where and

– A topological insulator for y<0  where
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• By defining

we have and

• The Hamiltonian has two edge states solutions
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– One is spin up right moving state

– The other is spin down left moving state

• They constitute a Kramers pairs of edge states.

• If there are even number of pairs of edge states, we have a 
trivial insulator

• If there are odd number of pairs of edge states, we have a 
topological insulator.
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• �2 Invariants
• �2 invariants are topological invariants that characterizes the

topological classes of �2 insulators.

• We have a TR symmetric Bloch Hamiltonian

and its eigenstates . Because of TR symmetry
are also eigenstates.

• Let us define the sewing matrix

)(kh

)(kui )(kuT i

At TRIM points this matrix is antisymmetric.

• For an antisymmetric matrix A , Pfaffian can be defined by

• Hence, the Pfaffian of the sewing matrix at TRIM points
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• The �2 invariant is defined as

• At all TRIM points the quantity has the value .

• The product of          values gives or which
corresponds to or .

• For , topologically trivial class

( ) ( )
∏
Λ∈

=−
k

w

w

λ

ν

λ
λ
)(det

)( Pf
1

det/ Pf 1±
1± 1+ 1−
0=ν 1=ν

0=ν• For , topologically trivial class

• For , topologically non-trivial class

• The eigenstates of the Bloch Hamiltonian at TRIM 
points determine the topological property of the system.

• Since there are only two topological classes, they are called
�2 insulators. (�2 is the group of two elements)
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• Experimental Realizations: BHZ Model
• SO interaction for graphene is extremely small, so the �2 insulator

property is experimentally hard to achieve.

• However, effective model of HgTe/CdTe quantum wells gives an 
experimental realization.

• Band structure of HgTe and CdTe near the Γ point

• CdTe has a normal semi-• CdTe has a normal semi-

• conductor band progression

• , which is Γ6 s-type band lying

• above the Γ8 p-type band.

• HgTe has an inverted band

• progression, where s-type Γ6

• band lies below the p-type Γ8

• band.                                                                  
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• In a CdTe/HgTe/CdTe quantum well, Γ6 – Γ8 six bands combine
to form an effective four-band model.

• E1 and H1 are linear combinations of Γ6 – Γ8 bands.

• If the thickness of the quantum well is smaller than a 
critical thickness than and
if then .
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• Effective Hamiltonian of the quantum well is written as

where .

• The system has TR symmetry, we can split the spin up-down parts.

• Components of the spin up part are
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• Hence we have

where A, B, C, D and M are material parameters and dependent
on the thickness of the quantum well.
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• The signs of the A, B, C and D parameters does not change with

• However, the sign of M changes at the critical thickness . 
Because M is related to the difference between E1 and H1 bands.

• Hence, we have a sign changing mass term.

• The Chern numbers for spin up and down cases are found as

d

cd

 >>± ddMB    ,   0   ,   1
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• So, we have a topological phase for QW thickness .

• For we have ordinary insulating phase.

• For we have

cdd >

cdd <

cdd >

0     and     0 1111 ≠−=+ ↓↑↓↑ CCCC

• Hence, there is spin current at the edge and there are helical
edge states. 

• So, this model is a �2 topological insulator.

• This model is the first experimentally realized topological
insulator. (Bernevig, Hughes and Zhang, Science 314, 1757 (2006))                      

(Molenkamp et al, Science 318, 766 (2007))
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Summary

• Sign changing mass terms are responsable for the topological insulator property.

• Topological insulators are bulk insulating and edge conducting systems.

• To deform a Hamiltonian from one topological class to another, one must pass
from a gapless metallic phase. (These are the edge states)

• There are two types of topological insulators: Chern insulators and �2 insulators.

• Chern insulators are TR breaking systems and are characterized by integer• Chern insulators are TR breaking systems and are characterized by integer
topological invariants; Chern numbers. They have chiral edge states.         
Example: Haldane model.

• �2 insulators are TR invariant systems and are characterized by two-valued
topological invariants; �2 invariants. They have helical edge states.            

Example: Kane-Mele model.

• There are experimentally realized materials that have topological insulator
property.
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… and what else?

• 3D topological insulators

• Classification and periodic table of TI

• Bundle theory and K-theory point of view to TI• Bundle theory and K-theory point of view to TI

• Topological field theory of TI

• Topological superconductors
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